387 research outputs found

    Properties of voids in the Local Volume

    Full text link
    Current explanation of the overabundance of dark matter subhalos in the Local Group (LG) indicates that there maybe a limit on mass of a halo, which can host a galaxy. This idea can be tested using voids in the distribution of galaxies: at some level small voids should not contain any (even dwarf) galaxies. We use observational samples complete to M_B=-12 with distances less than 8 Mpc to construct the void function (VF): the distribution of sizes of voids empty of any galaxies. There are ~ 30 voids with sizes ranging from 1 to 5 Mpc. We also study the distribution of dark matter halos in very high resolution simulations of the LCDM model. The theoretical VF matches the observations remarkably well only if we use halos with circular velocities larger than 45 +/- 10 km/s. This agrees with the Local Group predictions. Small voids look quite similar to heir giant cousins: the density has a minimum at the center of a void and it increases as we get closer to the border. Thus, both the Local Group data and the nearby voids indicate that isolated halos below 45 +/- 10 km/s must not host galaxies and that small (few Mpc) voids are truly dark.Comment: 5 pages 1 figure. To appear in proceedings of the conference "Galaxies in the Local Volume", Sydney, 8 to 13 July 200

    Formation of Globular Clusters in Hierarchical Cosmology: ART and Science

    Full text link
    We test the hypothesis that globular clusters form in supergiant molecular clouds within high-redshift galaxies. Numerical simulations demonstrate that such large, dense, and cold gas clouds assemble naturally in current hierarchical models of galaxy formation. These clouds are enriched with heavy elements from earlier stars and could produce star clusters in a similar way to nearby molecular clouds. The masses and sizes of the model clusters are in excellent agreement with the observations of young massive clusters. Do these model clusters evolve into globular clusters that we see in our and external galaxies? In order to study their dynamical evolution, we calculate the orbits of model clusters using the outputs of the cosmological simulation of a Milky Way-sized galaxy. We find that at present the orbits are isotropic in the inner 50 kpc of the Galaxy and preferentially radial at larger distances. All clusters located outside 10 kpc from the center formed in the now-disrupted satellite galaxies. The spatial distribution of model clusters is spheroidal, with a power-law density profile consistent with observations. The combination of two-body scattering, tidal shocks, and stellar evolution results in the evolution of the cluster mass function from an initial power law to the observed log-normal distribution. However, not all initial conditions and not all evolution scenarios are consistent with the observed mass function.Comment: 8 pages, invited review for conference "Globular Clusters, Guide to Galaxies", 6-10 March 2006, University of Concepcion, Chile, ed. T. Richtler, et a

    Energy level dynamics in systems with weakly multifractal eigenstates: equivalence to 1D correlated fermions

    Full text link
    It is shown that the parametric spectral statistics in the critical random matrix ensemble with multifractal eigenvector statistics are identical to the statistics of correlated 1D fermions at finite temperatures. For weak multifractality the effective temperature of fictitious 1D fermions is proportional to (1-d_{n})/n, where d_{n} is the fractal dimension found from the n-th moment of inverse participation ratio. For large energy and parameter separations the fictitious fermions are described by the Luttinger liquid model which follows from the Calogero-Sutherland model. The low-temperature asymptotic form of the two-point equal-parameter spectral correlation function is found for all energy separations and its relevance for the low temperature equal-time density correlations in the Calogero-Sutherland model is conjectured.Comment: 4 pages, Revtex, final journal versio

    Cosmological perturbations in a family of deformations of general relativity

    Full text link
    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.Comment: 45 pages, version published in JCAP; minor changes, one section moved to the appendi

    Multifractality and critical fluctuations at the Anderson transition

    Get PDF
    Critical fluctuations of wave functions and energy levels at the Anderson transition are studied for the family of the critical power-law random banded matrix ensembles. It is shown that the distribution functions of the inverse participation ratios (IPR) PqP_q are scale-invariant at the critical point, with a power-law asymptotic tail. The IPR distribution, the multifractal spectrum and the level statistics are calculated analytically in the limits of weak and strong couplings, as well as numerically in the full range of couplings.Comment: 14 pages, 13 eps figure

    The Galactic Halo in Mixed Dark Matter Cosmologies

    Full text link
    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDMm_{\rm WDM}) and the cosmic dark matter mass fraction in the WDM component (fˉW\bar{f}_{\rm W}). The scaling ansatz introduced in combined analysis of LHC and astroparticle searches postulates that the relative contribution of each dark matter component is the same locally as on average in the Universe (e.g. fW,=fˉWf_{\rm W,\odot} = \bar{f}_{\rm W}). Here we find however, that the normalised local WDM fraction (fW,f_{\rm W,\odot} / fˉW\bar{f}_{\rm W}) depends strongly on mWDMm_{\rm WDM} for mWDM<m_{\rm WDM} < 1 keV. Using the scaling ansatz can therefore introduce significant errors into the interpretation of dark matter searches. To correct this issue a simple formula that fits the local dark matter densities of each component is provided.Comment: 19 pages, 10 figures, accepted for publication in JCA

    Internuclear chromosome bridges in thyrocytes of papillary thyroid cancer in patients, subjected to radioactive iodine isotopes during first months after the accident at the Chernobyl nuclear power plant

    Get PDF
    Background. Fallout from Chernobyl accident was primarily to iodine radioisotopes, with Iodine-131 (I-131) being the most predominant. Radioiodines accumulated following the accident could induce pathologic changes in thyrocytes. Internuclear chromatine bridges and ‘‘tailed’’nuclei - broken bridge fragments - are considered like cytopathological effects of radiation exposure as these abnormalities are formed from dicentric chromosomes, which are established markers of radiation exposure. Objective. To test the possibility that internuclear bridges and tailed nuclei are cytological markers of radiation exposure of the thyroid. Methods. We investigated thyrocyte nuclear abnormalities in cytological samples from fine-needle aspiration biopsy in papillary thyroid cancer patients exposed to radioiodine after Chernobyl accident (35 subjects from Gomel region, Belarus) and in papillary thyroid cancer of unexposed patients (25 subjects from Leningrad region, Russia). Nuclear abnormalities included internuclear bridges and ‘‘tailed’’ nuclei were examined. Results. Cells in papillary thyroid cancer of irradiated patients are characterized by the high frequency of appearance of hole nucleoplasmic bridges as well as broken bridges in comparison with the control group. The average frequency of thyrocytes with bridges in irradiated patients was almost 4 times higher than that in the unexposed group (4,69±0,69‰ vs. 1,10±0,23 ‰, p<0.001). The same contrast was observed in parameter “frequency of thyrocytes with “tailed” nuclei” (12,40±1,82 ‰ vs 3,68±0,39 ‰, (p<0.001)). Conclusion. Thyrocytes with internuclear bridges may be considered as markers of radiation effects on the thyroid gland. Citation: Kravtsov VIu, Ibragimova NV, Nikonovich SN, Nadyrov EA, Rozhko AV. [Internuclear chromosome bridges in thyrocytes of papillary thyroid cancer in patients, subjected to radioactive iodine isotopes during first months after the accident at the Chernobyl nuclear power plant]. Morphologia. 2015;9(4):37-42. Russian

    Semiclassical Field Theory Approach to Quantum Chaos

    Full text link
    We construct a field theory to describe energy averaged quantum statistical properties of systems which are chaotic in their classical limit. An expression for the generating function of general statistical correlators is presented in the form of a functional supermatrix nonlinear σ\sigma-model where the effective action involves the evolution operator of the classical dynamics. Low-lying degrees of freedom of the field theory are shown to reflect the irreversible classical dynamics describing relaxation of phase space distributions. The validity of this approach is investigated over a wide range of energy scales. As well as recovering the universal long-time behavior characteristic of random matrix ensembles, this approach accounts correctly for the short-time limit yielding results which agree with the diagonal approximation of periodic orbit theory.Comment: uuencoded file, 21 pages, latex, one eps figur

    Dynamical Dark Energy simulations: high accuracy Power Spectra at high redshift

    Full text link
    Accurate predictions on non--linear power spectra, at various redshift z, will be a basic tool to interpret cosmological data from next generation mass probes, so obtaining key information on Dark Energy nature. This calls for high precision simulations, covering the whole functional space of w(z) state equations and taking also into account the admitted ranges of other cosmological parameters; surely a difficult task. A procedure was however suggested, able to match the spectra at z=0, up to k~3, hMpc^{-1}, in cosmologies with an (almost) arbitrary w(z), by making recourse to the results of N-body simulations with w = const. In this paper we extend such procedure to high redshift and test our approach through a series of N-body gravitational simulations of various models, including a model closely fitting WMAP5 and complementary data. Our approach detects w= const. models, whose spectra meet the requirement within 1% at z=0 and perform even better at higher redshift, where they are close to a permil precision. Available Halofit expressions, extended to (constant) w \neq -1 are unfortunately unsuitable to fit the spectra of the physical models considered here. Their extension to cover the desired range should be however feasible, and this will enable us to match spectra from any DE state equation.Comment: method definitely improved in semplicity and efficacy,accepted for publication on JCA

    Measurement of xF3xF_3 and F2F_2 Structure Functions in Low Q2Q^2 Region with the IHEP-JINR Neutrino Detector

    Full text link
    The isoscalar structure functions xF3xF_3 and F2F_2 are measured as functions of xx averaged over all Q2Q^2 permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of xF3xF_3 structure function provides ΛMSˉ(4)=(411±200)\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200) MeV under the assumption of QCD validity in the region of low Q2Q^2. The corresponding value of the strong interaction constant αS(MZ)=0.1230.013+0.010\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013} agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.Comment: 11 pages, 1 Postscript figure, LaTeX. Talk given at the 7th International Workshop on Deep Inelastic Scattering and QCD (DIS 99), Zeuthen, Germany, 19-23 Apr 199
    corecore